Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β-cell dysfunction.

نویسندگان

  • Clara Y Westwell-Roper
  • Jan A Ehses
  • C Bruce Verchere
چکیده

Islet amyloid polypeptide (IAPP) aggregates to form amyloid fibrils in patients with type 2 diabetes and acts as a potent stimulus for interleukin (IL)-1β secretion by bone marrow-derived macrophages. We sought to determine the contribution of resident islet macrophages to IAPP-induced inflammation and β-cell dysfunction. In cultured islets, macrophages (F4/80(+)CD11b(+)CD11c(+) cells) were required for IAPP-induced mRNA expression of the proinflammatory cytokines IL-1β, tumor necrosis factor-α, and IL-6 and the anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist. Moreover, IAPP-induced IL-1β synthesis and caspase-1 activation were detected in macrophages but not other islet cell types. Transgenic mice with β-cell human IAPP (hIAPP) expression had impaired glucose tolerance, elevated islet Il1b mRNA, and decreased Il10 and Il1rn expression following high-fat feeding. Islet macrophages were the major source of these transcripts and expressed increased cell surface Ly6C and CD11c in hIAPP transgenic mice. Clodronate liposome-mediated depletion of islet macrophages improved glucose tolerance and blocked proinflammatory gene expression in hIAPP-expressing mice, despite increasing the amount of islet amyloid. These data provide the first evidence that IAPP aggregates skew resident islet macrophages toward a proinflammatory phenotype and suggest a mechanism by which anti-inflammatory therapies may protect β-cells from IAPP-induced islet dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amyloid formation disrupts the balance between interleukin-1β and interleukin-1 receptor antagonist in human islets

OBJECTIVES β-cell dysfunction and apoptosis associated with islet inflammation play a key role in the pathogenesis of type 2 diabetes (T2D). Growing evidence suggests that islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to islet inflammation and β-cell death in T2D. We recently showed the role of interleukin-1β (IL-1β)/Fas/caspase-8 apoptotic pathway...

متن کامل

Amyloid formation reduces protein kinase B phosphorylation in primary islet β-cells which is improved by blocking IL-1β signaling

Amyloid formation in the pancreatic islets due to aggregation of human islet amyloid polypeptide (hIAPP) contributes to reduced β-cell mass and function in type 2 diabetes (T2D) and islet transplantation. Protein kinase B (PKB) signaling plays a key role in the regulation of β-cell survival, function and proliferation. In this study, we used human and hIAPP-expressing transgenic mouse islets in...

متن کامل

Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes.

The purpose of this study was to evaluate the effects of resident islet macrophage activation on beta cell function. Treatment of freshly isolated rat islets with TNF-alpha and LPS results in a potent inhibition of glucose-stimulated insulin secretion. The inhibitory actions of TNF + LPS are mediated by the intraislet production and release of IL-1 followed by IL-1-induced inducible nitric oxid...

متن کامل

Islet inflammation in type 2 diabetes and physiology

Introduction Metabolic syndrome comprises a cluster of diseases associated with excess nutrition and insufficient physical activity. Studies over the last two decades have shown that chronic inflammation is a common and potentially unifying mechanistic cause of these diseases (1–4). Inflammation can be viewed as an evolutionarily selected protective response enabling the host organism to cope w...

متن کامل

Salvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling

Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 63 5  شماره 

صفحات  -

تاریخ انتشار 2014